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Abstract

The present study aims to improve the calculus of Finite-Time Lyapunov Exponents
(iFTLEs) applied to describe the transport of inertial particles in a fluid flow. To this
aim, the deformation tensor used to obtain the iFTLE is modified to take into account
that the stretching rate between particles separated by a certain distance is influenced5

by the initial velocity of the particles. The advantages of this improvement, if compared
to the standard method (Shadden et al., 2005), are discussed for the double-gyre flow
and the meandering jet flow. The new method allows to identify the initial velocity that
inertial particles must have in order to maximize their dispersion.

1 Introduction10

The advection of finite-size or inertial particles in open, unsteady flows was initially
assessed independently by Maxey and Riley (1983) and Gatignol (1983). In contrast to
the idealized Lagrangian view, the two authors consider a number of additional forces
acting upon inertial particles moving in a flow such as buoyancy, the Stokes drag,
the added mass, or the Basset-Boussinesq memory force (see Michaelides, 2003 for15

a review). In this view, the motion of a spherical small solid particle in an incompressible
two-dimensional flow can be approximated by a Stokes flow (with Basset-Boussinesq
memory force and Faxén terms neglected) governed by the equation (Babiano et al.,
2000; Bec, 2003; Boffetta et al., 2004),

d2xi
dt2
−β

Dui
Dt

= − 1
τp

(
dxi
dt
−ui
)

(1)20

where β = 3ρf/(2ρp+ρf), τp = a
2/(3νβ) is the Stokes time or particle viscous response

time, vi = dxi/dt the velocity of the sphere and ui that of the fluid, ρp (ρf) the density
of the particle (fluid) it displaces, ν = µ/ρf, the kinematic viscosity, and a the radius of
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the sphere. The derivative D/Dt is taken along the path of a fluid element, whereas the
derivative d/dt is taken along the trajectory of the particle. The dimensionless Stokes
number St = τp/τf characterizes the effect of particles’ inertia and τf accounts for the
characteristic time scale of the fluid. A modified version of Eq. (1) has been recently
studied in the context of compressible fluids (Pérez-Muñuzuri, 2015).5

During the last years, the dynamics of inertial particles have been studied in many
research fields such as sedimentation processes (Santamaria et al., 2013), turbulent
flows (Boffetta et al., 2004), rain generation (Falkovich et al., 2002), composite mate-
rials (Segurado et al., 2003), volcanic ash transport (Haszpra and Tél, 2011), and the
formation of planetesimals in the early Solar system (Bracco et al., 1999), and other10

processes as transport of dust from soil erosion, combustion or the mixing of sprays.
Albeit the transport of Lagrangian particles as described by Finite-Time Lyapunov

Exponents (FTLEs) has been extensively studied to-date, to our knowledge only a few
studies have been performed with inertial particles (Haller and Sapsis, 2008; Sapsis
and Haller, 2009; Peng and Dabiri, 2009; Beron-Vera et al., 2014). Traditionally, FTLEs15

are calculated as the logarithm of the right Cauchy–Green strain tensor’s maximum
eigenvalue. They measure the maximum stretching rate at a given location r0 over
the time interval τ = t− t0 of trajectories starting near the point r0 at time t0 (Shadden
et al., 2005). However, the motion of inertial particles following the simplified model
mentioned above requires not only the knowledge of their initial positions but also that20

of their initial velocity fields. In this study, a modified procedure for calculating iFTLE
is proposed which takes into account this additional factor. Considering two idealized
flows (the double-gyre and the meandering jet), the results obtained by the new method
are illustrated and compared to those of the traditional one.

2 Methods25

For the dynamical system described above (1), an initial fluid element with coordi-
nates λ = (r0(t0),v 0(t0)) is advected by the flow u(r ,t) during a finite-time period τ,
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Λ =φ
t0+τ
t0

λ until reaching the final position Λ = (r (t0+τ),v (t0+τ)), such that the Cauchy
problem,

dΛ
dt

= f (Λ(λ,t0 + τ),t0 + τ) , Λ(λ,t0) = λ, (2)

holds. The gradient of the flow map (the deformation gradient tensor F) is Fm,n =

∂Λm/∂λn, and the right Cauchy–Green strain tensor is then defined as C = FTF,5

Cm,n =
∂Λk
∂λm

∂Λk
∂λn

. (3)

At each initial condition λ, the tensor C(λ) is represented by a symmetric, positive
definite, 4×4 matrix (for a 2-D flow), with four positive eigenvalues µ1 > .. . > µ4 > 0,
and four eigenvectors (ξk(λ))1≤k≤4 satisfying,

C(λ)ξk(λ) = µk(λ)ξk(λ). (4)10

In order to characterize the transport of inertial particles, we introduce the inertial
Finite-Time Lyapunov Exponents (iFTLE) σ that are computed along their trajectories
in the flow as (Peacock and Dabiri, 2010)

σ(λ,τ) =
1
τ

log
√
µ1(C(λ)) (5)

where
√
µ1 denotes the ratio of stretching between two particles which are initially15

located close to each other and have different initial velocities in the direction of the
largest stretching. The iFTLE at a given location measures the maximum stretching
rate of an infinitesimal fluid parcel over the interval [t0,t0 + τ] starting at the point λ at
time t0. Repelling (attracting) coherent structures for τ > 0 (τ < 0) can be thought of
as finite-time generalizations of the stable (unstable) manifolds of the system. These20
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structures govern the stretching and folding mechanism that control the mixing of the
flow of inertial particles.

For the computation of the iFTLE field, the integration time τ and the initial conditions
λ at time t0 must be predefined. Basically, τ has to be long enough to allow the trajecto-
ries to explore the coherent structures present in the flow. For the initial state λ at time5

t0, we are interested in studying the iFTLEs as a function of the direction and intensity
of the particle velocity with respect to the velocity of the flow u. To this end, instead
of using the cartesian components of the particle velocity, we will use from now on its
polar coordinates defined by v 0 = R |u| (cos(α+α0),sin(α+α0)), with R > 0 and α0 the
direction of the flow velocity u at t0. Then, the elements of the deformation gradient10

tensor are computed by a finite-difference method as,

∂Λ1/∂λ1 =
x1(i +1, j )−x1(i −1, j )
x0(i +1, j )−x0(i −1, j )

∂Λ1/∂λ3 =
x1(i , j )−x2(i , j )

M1
0 (i , j )−M2

0 (i , j )

∂Λ1/∂λ4 =
x1(i , j )−x2(i , j )

α1
0(i , j )−α2

0(i , j )

∂Λ3/∂λ1 =
M1(i +1, j )−M1(i −1, j )
x0(i +1, j )−x0(i −1, j )

15

∂Λ3/∂λ3 =
M1(i , j )−M2(i , j )

M1
0 (i , j )−M2

0 (i , j )

∂Λ3/∂λ4 =
M1(i , j )−M2(i , j )

α1
0(i , j )−α2

0(i , j )
993
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∂Λ4/∂λ4 =
α1(i , j )−α2(i , j )

α1
0(i , j )−α2

0(i , j )
(6)

...

and similarly for the rest of terms. The indices i , j correspond to the directions x,y ,
respectively, and the superscripts 1 and 2 to two layers of particles with different initial
velocities,5

v 1
0 = |u| (cos(α+α0),sin(α+α0))

v 2
0 = R |u| (cos(α+δα+α0),sin(α+δα+α0)) (7)

Mk (Mk
0 ) and αk (αk0 ) account for the modulus and direction of the particle velocities v k

at t = τ (t = t0), respectively, in both layers k = 1,2. The advantage to define the initial
velocities as above allows to use a constant initial gradient δα0 for the deformation10

tensor, although some caution must be taken in order to select R in δM0 (see below),

δx0(i , j ) = x0(i +1, j )−x0(i −1, j ) = 2∆ = const

δy0(i , j ) = y0(i , j +1)− y0(i , j −1) = 2∆ = const

δα0(i , j ) = α1
0(i , j )−α2

0(i , j ) = δα = const

δM0(i , j ) =M1
0 (i , j )−M2

0 (i , j ) = (R −1)|u|. (8)15

with ∆ the distance between particles initially located in a regular grid.
The results obtained from using the improved iFTLE calculation method will be com-

pared to those obtained from the standard method (Shadden et al., 2005) which only
takes into account deformation due to the initial positioning (dim(F) = 2). It is recog-
nized that initial velocity has been considered for this purpose in previous studies (see20

for example Peng and Dabiri, 2009). These studies, however, did not explicitly consider
its effect on the deformation tensor F, as is done above.
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3 Results

We investigate the effect of initial velocity v 0 on inertial particle motion in two chaotic
flows; the double-gyre flow and the meandering jet flow (see Appendix for equations).
The dynamics of these flows are completely different. While the first model describes
a closed flow, the second one describes an open one. In the double-gyre model, the5

flow is the combination of two vortices rotating in opposite directions that conversely
expand and contract periodically in the x direction such that the rectangle enclosing the
gyres remains invariant. The periodic perturbation leads to mixing between both gyres.
On the other hand, the jet flow is a simple kinematic model for the Gulf Stream and is
frequently used to describe western boundary current extensions in the ocean. Three10

different regimes can be observed in this flow and the presence of temporal variability
in the amplitude of the meander favors mixing and chaotic transport.

The (x,y)-projection of the iFTLE fields calculated with the method depicted above
are shown in the upper rows of Figs. 1 and 2, assuming two different initial angles α.
For comparison, the FTLE fields calculated with the standard method (Shadden et al.,15

2005) are shown in the lower rows of these figures. The two methods are applied
on identical initial velocities. In what concerns the double-gyre flow (see Fig. 1), the
pattern is sensitive to variations in α for both methods in the sense that the ridges
are not equally distributed. Due to inertia, particle motion is affected by the distribution
of the initial velocities as was already noted by Peng and Dabiri (2009). The iFTLE20

patterns, however, provide new information as they indicate the regions where larger
mixing is expected for a given angle α. The projection of the 4-D iFTLE onto the (x,y)
plane results in a stroboscopic pattern characterized by crossing ridges.

A comparison between Figs. 2 and 1 reveals that the method-related differences in
the FTLE fields are larger for the meandering jet flow than for the double-gyre flow.25

For the meandering jet flow, (see Fig. 2), the maximum dispersion (as displayed by red
areas) is attained within the central meandering jet in all cases. For α = 90◦, however,
the filamentary structures obtained by our method are wider than those obtained by
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the standard method (compare upper and lower panels in Fig. 2). This indicates that
the largest dispersion is achieved by those particles that (i) are initially located near the
axis of the jet and (ii) have an initial velocity perpendicular to the flow (v 0 ·u = 0). In this
case, particles are trapped within the circulation regimes located above the meander
troughs and below the meander crests where the mixing of the flow is larger than in5

the remaining areas. This result is consistent with physical intuition and demonstrates
that the initial velocity of inertial particles contributes to their dispersion in the flow. For
ε 6= 0, due to the periodic modulation of the meander’s amplitude, mixing is favored
between the circulations and the peripheral currents and between the circulation cells
and the jet (Prants et al., 2006). Particles are trapped in the eastward currents and in10

the jet where they may spend larger periods of time. For this flow, dispersion is largest
in the circulation cells located above the meander troughs and below the meander
crests. The new method allows to identify those areas where maximum dispersion is
attained.

Figure 3 shows the mean iFTLE as a function of α (on the x axis) and R (as rep-15

resented by distinct lines) for heavy and light inertial particles (right and left column
respectively) in the two considered flows. A modification of the initial velocity R leads
to distinct local iFTLE maxima along the range of possible α values. The mean iF-
TLEs obtained by our method are systematically more sensitive to changes R and/or α
than the corresponding values obtained by the standard method (which is insensitive to20

changes in R by definition). These differences are larger for the heavier particles than
for the lighter ones (compare right to left column) and are particularly pronounced for
the case of a chaotic jet flow (ε = 0.5).

The mean FTLEs are larger for the heavier particles (β = 0.2) than for lighter ones
(β = 3.0) because clustering diminishes with increasing ρp. Heavier particles are less25

influenced by the flow (they move slowly) and they are less likely to be displaced to-
wards the trapping areas. Without periodic modulation (ε = 0), light particles concen-
trate inside the inner cores of the vortices as they are driven inward due to the lesser
inertial. On the contrary, heavy particles tend to move away from the inner core to re-
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gions characterized by low vorticity and high strain, a process known as preferential
concentration (Eaton and Fessler, 1994). Thus, when u× v 0 and ∇×u have the same
sign, the dispersion within the vortices will decrease for lighter particles and increase
for heavier ones.

Next, the iFTLE-field’s response to changes in the initial conditions is assessed by5

means of the eigenvector, decomposed into the factors “initial position” and “initial ve-
locity”. To this end, we calculate the ratio between both,

Γ =
< ξ1>(M,α)

< ξ1>(x,y)
(9)

where < ξ1>(M,α) is the spatial average of the eigenvector ξ1 corresponding to the
largest eigenvalue, Eq. (4), projected onto the (M,α) plane. Figure 4 shows Γ as a func-10

tion of R and α. For some angle ranges, and depending on the initial modulus R, the
initial velocity (Γ > 1) is the largest contributor to the main eigenvector ξ1(Λ). Note,
for example, that for light particles in the double-gyre flow there is nearly no depen-
dence on the initial velocity parameters. Thus, Γ is a parameter describing the region’s
sensitivity (in terms of iFTLE) to changes in initial position and velocity.15

4 Conclusions

In the present study, a new method for calculating iFTLEs used to describe the motion
of inertial particles in a fluid flow was suggested which, in contrast to the standard
method (Shadden et al., 2005; Peng and Dabiri, 2009), takes into account the particles’
initial velocity. It is shown that the results obtained with the new method are sensitive to20

variations in initial velocity, indicating that the suggested modifications are meaningful
from a practical point of view. The presence of different flow regimes lead to larger
differences in the particle dispersion when taking into account the initial velocity, as
particles may change between different regimes. Thus, for the jet flow, initial velocities
perpendicular to the flow close to the jet stream regime lead to larger dispersion.25
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More importantly, our method does not only hold for particle motions described by
the Maxey–Riley equation (Eq. 1), but can be applied to any type of equation used
to describe the motion in an N-dimensional flow as well as the associated transport
and mixing properties. It can be generalized to any type of particle motion, such as
the dispersion of marine litter (micro and macro plastics) (Lebreton et al., 2012), or5

the motion of drifting buoys near the coast where inertial effects may be particularly
relevant (Huhn et al., 2012).

Appendix: Models

The periodically varying double-gyre flow (Shadden et al., 2005) is used as a standard
test case for FTLEs and can be considered a local view of a gulf stream ocean front.10

In this case, the flow is described by the stream function,

ψ(x,y ,t) = Asin(πf (x,t))sin(πy), (A1)

where

f (x,t) = a(t)x2 +b(t)x,

a(t) = εsinωt,15

b(t) = 1−2εsinωt,

over the domain [0,2]× [0,1]. T = 2π/ω and A are the period and amplitude of the
flow, respectively. For ε = 0 the system can be thought of as a time-independent 2-D
Hamiltonian system. For this case there is a heteroclinic connection of the unstable
manifold of the fixed point (1,1) with the stable manifold of the fixed point (1,0).20

The meandering jet flow was introduced as a simple kinematic model for the Gulf
Stream (Bower, 1991), and is frequently used to describe western boundary current
extensions in the ocean (Samelson, 1992; Cencini et al., 1999; López et al., 2001;
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Prants et al., 2006). The corresponding dimensionless stream function can be written
as (Samelson, 1992)

ψ(x,y) = − tanh

 y −Bcosκx(
1+ κ2B2sin2κx

)1/2

+Cy , (A2)

over the domain [−20,20]× [−2B0,2B0]. B is the meander’s amplitude, κ is the
wavenumber and C is the phase velocity of the meander.5

This flow can be divided into three distinct regimes: a central meandering eastward
jet, several closed circulation cells located above the meander troughs and below the
meander crests, and an exterior retrograde westward motion (Samelson, 1992). Fluid
particles are restricted to each of these regimes and no cross-stream mixing occurs.
When adding temporal variability, the boundaries between the regimes break up, allow-10

ing transport and exchange of fluid between them. A time-dependent spatially uniform
meander amplitude

B = B0 +εcos(ωt+φ) (A3)

will be considered here (Samelson, 1992; Prants et al., 2006), where the phase φ ∈
[0,2π] is an arbitrary constant.15

For both flows, their advective velocities u are obtained as u = ez ×∇ψ . For the nu-
merical experiments, initially a cluster of 1280×640 (gyre flow) and 1920×384 (jet flow)
particles were distributed regularly in space. Then, the trajectories of these particles
are calculated by integrating Eq. (1) using a 4th order Runge–Kutta scheme and a fixed
time step of ∆t = 10−3.20

Acknowledgements. This work was supported by Ministerio de Economía y Competitividad
under Research Grant CGL2013-45932-R.
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Figure 1. Finite-Time Lyapunov Exponents σ(x,y) for heavy inertial particles in a gyre flow,
assuming two different initial angles α. The iFTLE fields in the upper row were calculated using
Eq. (5), while those in the lower row were calculated using the standard method. The model
parameters are R = 0.6, A = 0.1, ε = 0.25, T = 10, τp = 1, β = 0.2 and the integration time is
τ = 30.
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Figure 2. Finite-Time Lyapunov Exponents σ(x,y) for heavy inertial particles in a meandering
jet flow, assuming two different initial angles α. The iFTLE fields in the upper row were calcu-
lated using Eq. (5), while those in the lower row were calculated using the standard method.
The model parameter are R = 0.3, C = 0.2, B0 = 2, κ = 0.3, ε = 0, ω = 0.299, τp = 1, β = 0.2
and the integration time is τ = 80.
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Figure 3. Spatial average FTLE as a function of the initial velocity parameters R (displayed
by distinct lines) and α (displayed along the x axis) for light (β = 3.0 left column) and heavy
(β = 0.2 right column) inertial particles and the double-gyre and meandering jet flow. Color
lines correspond to the results obtained by the new method Eq. (5), whereas black dashed lines
correspond to those obtained by the standard method. R = 0.3 (blue solid line), R = 0.6 (red
dotted line), R = 0.9 (green dashdot line), and R = 1.2 (black dashed line). Rest of parameters
as in Figs. 1 and 2.
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Figure 4. Contribution to the eigenvector ξ1 corresponding to the largest eigenvalue due to
the initial velocity and position Γ, Eq. (9), as a function of the parameters R and α for light
(β = 3.0 left column) and heavy (β = 0.2 right column) inertial particles for the double-gyre and
meandering jet flows. For Γ > 1 the main contribution to the eigenvector is due to the initial
velocity. R = 0.3 (blue solid line), R = 0.6 (red dotted line), R = 0.9 (green dashed-dotted line),
and R = 1.2 (black dashed line). Rest of parameters as in Figs. 1 and 2.

1005

http://www.nonlin-processes-geophys-discuss.net
http://www.nonlin-processes-geophys-discuss.net/2/989/2015/npgd-2-989-2015-print.pdf
http://www.nonlin-processes-geophys-discuss.net/2/989/2015/npgd-2-989-2015-discussion.html
http://creativecommons.org/licenses/by/3.0/

	Introduction
	Methods
	Results
	Conclusions

